Road Weather Management And Connected Vehicles

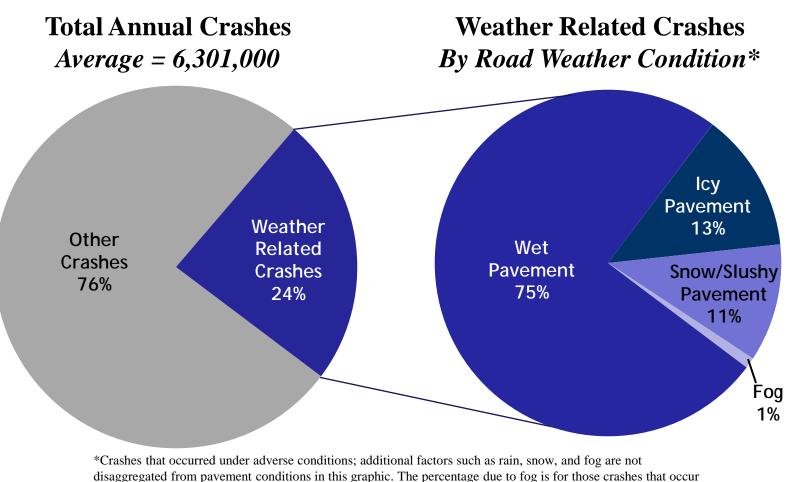
September 26, 2012

Paul Pisano

Team Leader, Road Weather & Work Zone Management FHWA

Dale Thompson

Program Manager, Data Capture and Road Weather RITA



Topics

- Background
- Applications Concepts and Prototyping
- Benefit-Cost Analysis
- Vehicle Data Needs

2

Crash Situation Under Adverse Weather

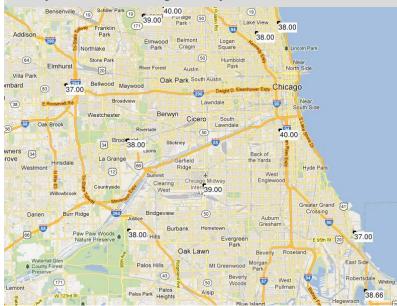
under foggy conditions, but not wet, icy, or snowy pavement conditions.

Source: Road Weather Management Program, Table: Weather-Related Crash Statistics (Annual Averages), Available at: http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm

3

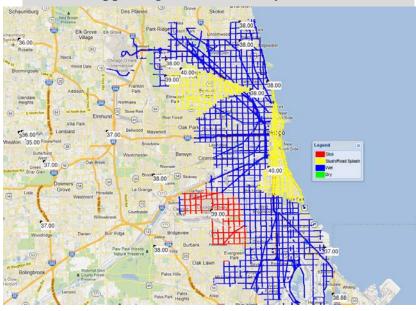
Weather-related Costs

- State DOTs spend:
 - \$2 billion/year on snow and ice control
 - \$5 billion/year on infrastructure repairs due to snow & ice
- Delays from snow, ice, and fog cost \$11.6 billion per year
- Delays due to weather cost trucking companies \$3.1 billion/year in the 50 largest cities
- Lost commerce due to storm-closed roads is \$3.82 billion in just 15 states


In order to make a difference...

- Road managers and users need route-specific/ segment-specific/spot-specific weather and road condition information to:
 - Reduce weather-related crashes by changing driver behavior
 - Actively manage traffic demand and capacity
 - Carry out winter maintenance activities more effectively and efficiently
 - Make better travel choices
- There are two ways to get the information:
 - Road Weather Information Systems
 - Connected Vehicles

Potential of Connected Vehicles


Today

A 60% chance of snow, mainly afternoon. Sunny early, then becoming cloudy.

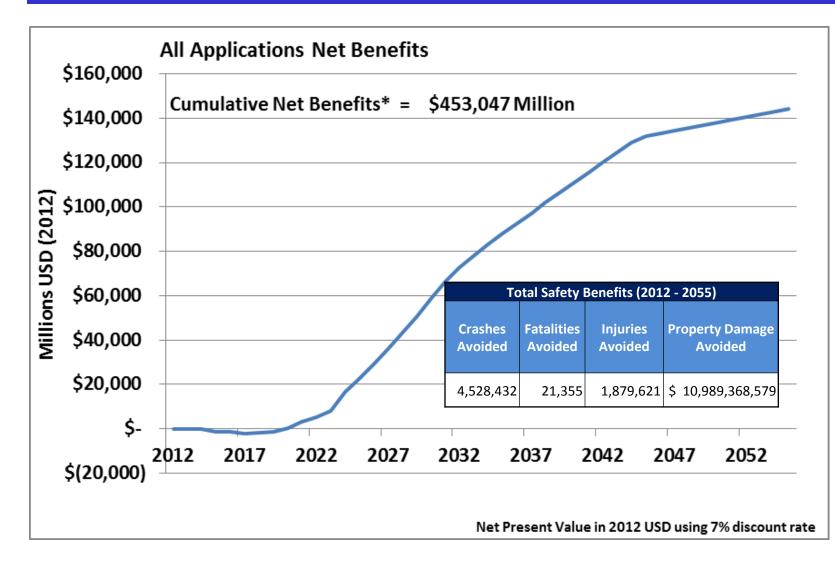
Future

Connected vehicles provide continuous picture of what's happening on the roadways

ROAD

U.S. DOT Connected Vehicle Efforts

- Develop ConOps
 - Engage stakeholders to validate RdWx applications (i.e. vehicle data) needs and benefits
 - Conduct Benefit-Costs Analyses
- Identify specific weather-related vehicle data requirements for RdWx applications
- Develop, test and evaluate RdWx applications
- Conduct controlled experiments to characterize specific weather-related vehicle data elements


Road Weather CV Applications

- Enhanced Maintenance Decision Support
- Information for Maintenance and Fleet
 Management Systems
- Weather-Responsive Traffic Management
 - Variable Speed Limits
 - Signal Timing Optimization
- Motorist Advisories and Warnings
- Information for Freight Carriers
- Information and Routing Support for Emergency Responders

Applications Benefit-Cost Analysis

- Estimate potential national costs and benefits resulting from the implementation of RdWx connected vehicle applications
- Being developed in two phases:
 - Phase I
 - Focuses on safety aspects of the applications
 - Due for completion October, 2012
 - Phase II
 - Focuses on mobility and environmental aspects
 - Due for completion December, 2012
- Will help establish the most critical weatherrelated vehicle data elements

Road Weather Applications - Net Benefits

Integrating Mobile Observations (IMO) Project - Lessons Learned

- CAN-Bus/OBD data from vehicle probes is relatively easy to get and transmit
- Decoding/interpreting the Parameter Group Numbers (PGNs) and Suspect Parameter Numbers (SPNs) is very difficult
- The effort has resulted in significant progress identifying Wx-relevant PGNs and SPNs and creating a data dictionary, but there's still room for improvement
- CAN-Bus/OBD data was successfully transmitted over 700MHz radio and Common Cellular Carrier Networks
- Mobile data has been successfully integrated into *Clarus* and a couple of state applications

Priority Vehicular Data (best guess)

BSM Part 1

- Brake system status
 - Brake applied status
 - Traction control status
 - Anti-lock brake status
 - Stability control status

BSM Part 2

- Vehicle status
 - Exterior lights
 - Wipers
 - Brake system status
 - Roadway friction
 - Rain sensor
 - Ambient air temperature
 - Ambient pressure
 - Yaw rate
- "Black Ice" warning requires near-instantaneous information while other algorithms operate with data rates from once per second to once every 30 seconds
- 15 observations per segment (e.g., 1 mile) per time step (e.g., 15 min) should be sufficient for confidence in the application outputs
- Bandwidth required for data transmission is minimal (85-365 bytes)

- Demonstrate value of connected vehicle data via the development, testing and evaluation of key applications
- Carry out the Phase II Benefit-Cost analysis with focus on mobility, environment and other benefits
- Validate weather-related vehicle data elements in support of USDOT (NHTSA) Rulemaking decision